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Executive Summary

The Piccolo project defines a distributed computing architecture that features flexible composition and
dynamic, constraint-aware function instantiation. In this system, multiple workloads, each comprised
of individual function residing on different Node platforms share a common infrastructure, with the
general assumption that neither the underlying Node platforms nor the network has to be trusted.

Thus, one key Piccolo feature is the isolation of Piccolo workloads (distributed applications) in shar-
ing such a common infrastructure. Isolation refers to security and performance isolation and is a
system-wide as well as a Node-local property.

Piccolo has a Node architecture that specifies functions/services of node platforms as well as their
APIs to guest functions and the rest of the Piccolo infrastructure. Piccolo systems can leverage
different Node implementations, for example featuring different virtualisation and containerisation
technologies. This document focuses on the per-Node isolation aspects, however it is also touching
upon the system-wide isolation vision for context.

We describe how functions interact with the Node Agent service on each Piccolo Node variant and
how performance and security isolation is respectively achieved. We also describe open issues and
plans for further research.
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1 Introduction

This document describes the work that has been done within the project looking at approaches for
improving the isolation and security aspects of a Piccolo Node and a Piccolo System consisting of
Piccolo Nodes that are connected and can communicate with each other.

The vision of the Piccolo Project is that “compute” will become integrated into the network and stor-
age fabric: Every network node will provide secure processing and storage for third party applications
and network functions. In this context, from a security and isolation perspective, the key challenge
is to enable multi-tenancy: for multiple users, the ability to support computation distributed across
the nodes, alongside guarantees that one tenant cannot interfere with the operation of another tenant.
(Earlier deliverables discuss this, amongst other design goals and requirements for a Piccolo system
[1] [2] [3].)

Multi-tenancy breaks down into several requirements which can be categorised as follows:

• Access control - authentication of users and their applications requesting access to Piccolo
resources;

• Data security - ensuring that users and applications can only access and update their own data;

• Anonymity - ensuring that users/applications cannot identify other users/applications

• Isolation - constraining users and applications to use only their allocated resources.

The Piccolo node architecture specification is flexible and does not mandate any particular underlying
hardware/software platform (as discussed in Piccolo Deliverable report D2.1 [2]). It is therefore
appropriate to consider several approaches to meeting the above requirements.

Section 2 discusses the following approaches:

• achieving a reasonable degree of isolation by using micro-actors and language virtual machines
(Section 2.3), virtualisation (Docker containers Section 2.4 or kata-containers, Section 2.5), or
language specific sandboxing (Section 2.2);

• relying on trusted computing (realms, Section 2.4, or Arm’s TrustZone technology, Section 2.3);

• requiring applications to sign and authenticate all data packets, within a data oriented approach
(Section 2.4);

• using access control and data privacy in our Behavioural risk monitoring Proof of Concept
(demonstrator) (PoC).

The technology selection for a particular Piccolo node and Piccolo system depends on: the sensitivity
of the workload, the acceptability of under- or over- utilisation of resources, the type of deployment
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(for example, private vs public network), and so on. The actual Piccolo functionality running on each
node is controlled by its agent.

Section 3 discusses planned work within the timescale of the project, as well as work that we believe
would be worthwhile but is beyond our scope.

In summary, we consider security and isolation to be related concepts that when implemented together
provide confidence that the system resources can be allocated amongst multiple authenticated parties
to perform compute with strong enforcement to prevent interference between the applications and
information leakage.
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2 Challenges and advances

This section discusses several ways of meeting the security and isolation challenges. It includes work
done as part of a proof-of-concept implementation based on Piccolo concepts and also work done
using a number of distributed computing systems. The sub-sections discuss:

• for our Behaviour risk monitoring Proof of Concept demo (PoC), the approach chosen;

• techniques suitable for GRiSP and Erlang;

• work on micro-actors;

• an approach to decentralised data processing called IceFlow;

• some experiments using kata-containers for virtualisation.

2.1 Behavioural risk monitoring PoC

The aim of this (PoC) is to instantiate a real-time data processing pipeline which embraces the concept
of a Piccolo trusted in-network compute node, and manifest as a Working Demonstrator of future
potentially exploitable capability applied to behavioural risk management in the automotive sector.

The goal is to perform real-time distributed, processing of sensor data from multiple sources in a road
vehicle, in particular:

• Telematics data sourced from a vehicle’s Controller Area Network (CAN) bus via the On-board
Diagnostics (OBD) OBD-II port

• Edge-based computer-vision processing of potential hazards internal and external to the vehicle
from imaging sources (cameras) on board the vehicle.

The exploitation goal is to perform ‘sensor-fusion’ style analytics of the data points from these sources
in order to derive a real-time and continuous measure of ‘behavioural risk’ associated with a vehicle
during each journey.

The research goal is to redistribute the classic ‘edge to cloud’ type computing architectures that rep-
resent the current state of the art with these types of sensor-fusion applications into one that employs
in-network computing nodes that offer enhanced security/privacy, extensible feature-functionality and
enhanced computing cost-efficiency.

In the first phase of the Proof of Concept (PoC) project activity, the components selected to con-
struct the end-to-end processing pipeline are described in detail in Deliverable D1.2 of the project
(“Application Design Development Report), and are summarised below:
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• Eclipse Kuksa - for extraction of appropriate telemetry from the vehicle CAN

• A modified form of Sensing Feeling’s redistributed Visual Processing Engine (VPE) originally
designed for 5G MEC deployments

• Genivi IoT Event Analytics (IoTEA) - for transformation of vehicle telemetry into data points
meaningful for behavioural risk measurement

• Bosch and Sensing Feeling’s cloud-based analytics platforms for final analytics, behavioural
risk computation and reporting

The Piccolo node system concept was selected to be implemented on Fluentic’s Trusted In Network
Computing (TINC) prototype, which aimed to deliver the following in-network computing features:

• Resource allocation through dynamic auctions

• Secure Processing (using Intel Software Guard Extensions (Intel) (SGX) enclaves)

• Function-as-a-Service (using Information-Centric Networking (ICN)/Named-Data Networking
(NDN) plugin)

• Task Prioritisation and Outsourcing

Resourcing challenges at Fluentic in late 2021 resulted in TINC prototype development ceasing, and
the replacement of the in-network computing node with substitutes that focus on Access Control and
Anonymity instead of strong Data Security and Isolation.

In this revised approach, Sensing Feeling’s edge-based Visual Processing Engine (VPE) is decom-
posed into two parts to deliver the PoC’s Vision Processing pipeline:

• The VPE elements that handle image frame extraction and preparation - remains at the edge

• The Deep Neural Network (DNN) Model Server - introduced into an in-network compute host
(Piccolo)

Access Control security between the VPE and the Model Server is implemented using authenticated
and encrypted Remote Procedure Call (RPC) technology implemented using gRPC. The gRPC ex-
change provides the ability to off-load the compute-expensive (but stateless) task of processing image
frames through the target DNNs available in the Model Server. The results of the processing are sent
back to the VPE as part of this exchange, which continues to interact with the remote cloud-based
Analytics Engine in the usual way, using the IoT core, based on the (originally Message Queueing
Telemetry Transport) (MQTT) message broker architecture.

Figure 1 illustrates the data flows implemented in this approach.

For the PoC, image frames will be processed in the in-network Model Server in real-time, whilst the
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Figure 1: Behavioural Risk PoC Vision Processing Pipeline

results of the processing are combined with the telemetry stream from the vehicle at the Analytics
Engine. Because the in-network element can conceptually handle the processing of frames from
multiple VPEs (and hence multiple camera sources) in a stateless fashion, where images are discarded
immediately after processing within the network, the rights to personal data privacy are upheld in the
same manner that would be undertaken at the edge. It could be argued that the safeguarding of
rights to privacy of any personal data captured at the edge is strengthened by processing the data in
the network, as the image processing and deletion tasks for all edge VPEs is taking place in fewer
‘ephemeral’ in-network compute nodes instead of many more widely-distributed edge nodes.

2.2 GRiSP Seawater SaaS Language specific sandboxing

Out of the box the Erlang VM has no support for multi tenancy, either inside one VM or within cluster
of Erlang nodes connected with its built-in distribution protocol. Therefore normally one would run
separate instances of Erlang VMs in containers or in a virtualisation environment for multi tenancy
(Figure 2).

VM/Jail/Container + 
Operating system

Erlang VM

User
Application

VM/Jail/Container + 
Operating system

Erlang VM

User
Application

VM/Jail/Container + 
Operating system

Erlang VM

User
Application

Figure 2: Virtualisation or container based sandboxing

There has been some implementation of Erlang-based sandboxing of Erlang code for teaching pur-
poses1, based on limited code interpretation. Disadvantages are slow speed of the interpreted code

1https://www.tryerlang.org
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and it took a lot of effort to secure against breaches and is hard to maintain as can be seen in the really
old version of Erlang running in Tryerlang (Figure 3).

Erlang VM

Interpreter

User
Application

User
Application

User
Application

Figure 3: Interpreter based sandboxing

When one implements another language on top of the Erlang VM, running alongside Erlang code, one
can achieve some level of sandboxing in the compiler and run-time for the implemented language. By
taking care not to allow callouts to general Erlang run-time functions and not allowing user written
Erlang code, one can make use of Erlang’s language and run-time feature to provide a limited grade
of isolation of multiple tenants sharing one Erlang VM.

Erlang’s immutable data structures, process isolation and fault tolerance features help greatly in mak-
ing this kind of language based isolation achievable with a moderate amount of security. One area that
needs some extra work is the fairness of computation resource usage. On the language level, Erlang’s
round-robin scheduling (which behaves like preemptive scheduling) ensures that multiple processes
each get their fair share of resources. So, to achieve fairness between tenants sharing one Erlang VM,
one needs to make sure that a tenant doesn’t simply create numerous processes in order to grab more
resource. In addition it will be useful to limit the amount of compute resources a particular process is
allowed to consume, and to prevent one user flooding the system with messages - essentially limiting
the number of message-causing operations per user and per unit time. Any extra limitations should
be handled in the run-time for the programming language sandbox.

Peer Stritzinger GmbH is building a Internet Of Things (IoT) focused Software as a Service (SaaS)
which includes our Erlang based implementation of the International Electrotechnical Commission
(standards body) (IEC) 61499 standard for distributed Programmable Logic Controller programming.
In this run-time the language specific sandboxing techniques described above are available for the
free service tier. For a free service tier it is most important to keep the cost down by sharing existing
Erlang nodes where the Erlang VM schedulers can cooperate and optimise resource usage. While the
same SaaS code-base will also be used in the Smart Factory use case, it will be hosted on premises
and multi tenancy is not required.

In the IEC61499 run-time the language element of function-blocks is mapped to Erlang processes.
The language element for event based data flow is mapped to Erlang messages. The compiler trans-
lates the IEC61499 code into pure functional Erlang callback code, which is called by a language
specific run-time written in Erlang (Figure 4). In this Erlang code we have full control over mes-
sage sending and receiving and can time-out the callback functions which contain the translated user
functionality. In addition we can measure the CPU resources consumed by these callback functions.
The amount of allowed processes per user can be controlled by the Integrated Development Environ-
ment (IDE) by limiting the number of function-blocks. Memory usage can also be controlled easily

CO PICCOLO consortium 2022 Page 13 of (30)



PICCOLO Deliverable D2.3

Erlang VM

IEC61499 Runtime
User1 Instance 

Data 1 User 1
Callbacks

User 2
Callbacks

User1 Instance 
Data 2

User2 Instance 
Data 1

Figure 4: Sandboxing in IEC61499 Erlang implementation

since the language has very static data model which allows to measure memory usage of a function
block at compile time.

The free tier on this SaaS demonstrates the functionality of the system to potential customers of paid
tiers and possibly for educational purposes. Limited performance is acceptable and provides pressure
to go for paid tiers where all of a user’s code runs in their own Erlang instance.

Another Erlang VM based language implementations with a similar sandboxing exists for LUA 2

which given the steadily rising popularity of LUA is also something we will explore in the future.

2.3 𝜇Actor

𝜇Actor [4] is a serverless compute platform developed at the Technical University of Munich that
allows running actors on a heterogeneous set of nodes—the same actors can run on small micro-
controllers at the far edge of the network and large cloud servers. The actors communicate using
content-based messaging: Actors subscribe to messages published to the network by expressing con-
straints on their content. Further information on 𝜇Actor can be found in our publication [4].

The actors may originate from untrusted users who can deploy them without requiring approval by
the owners of the device. Therefore, they need to be isolated from each other and limited in their
access to the system resources. Hence, the security challenge discussed here is the isolation of those
serverless actors across a set of heterogeneous devices. In the following, we first describe the isolation
properties provided by the use of the actor model and the system’s architecture and then describe the
chosen method of using language virtual machines to ensure that the system’s architectural properties
are enforced. Finally, we discuss the possibility of protecting the language virtual machines using
ARM’s TrustZone technology.

2https://github.com/rvirding/luerl
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Figure 5: 𝜇Actor node mapped to the Piccolo node architecture [5]

The actor model can be seen as an isolation mechanism: The actor’s state is local, and actors can
only interact with each other using messaging [6, 7, 8]. While the theoretical actor model proposes
to use unforgeable addresses that an actor can only use if it has previously received it [7, 8], 𝜇Actor
employs a publish/subscribe model as its primary communication abstraction: Actors can subscribe
to arbitrary data and can publish messages matching the subscriptions of arbitrary actors. We assume
that the publications contain unforgeable publisher information—this can only be guaranteed on the
local node and across trusted nodes—and that the receivers filter the messages they react to based on
actor-specific criteria. Furthermore, the actors are only active when reacting to a message [7], which
is a natural fit for serverless entities: The runtime can activate the actors at a suitable point in time
and multiplex a system thread across many actors [4]—the model does not require a direct mapping
between actors and threads [8].

Some actors need to interact with their environment, e.g., sensors, actuators, or external services. To
enable this, the system could provide APIs to the actors received from the network that allow them to
interact with these resources. The system would need to ensure the APIs are only exposed to the actors
to the extent desired by the platform, i.e., not every actor should be provided with every Application
Programming Interface (API). Similarly, the platform would need to ensure that there is no mutually-
conflicting access from different actors [4]. Finally, exposing the APIs increases the attack surface for
malicious actors. Instead of providing the actors received from the network with those APIs, 𝜇Actor
reserves the capability to interact with external entities to actors bundled with the platform. Those
platform actors are implemented using native code, are assumed to be trusted, and are accessible to
the untrusted actors only using messages. They can selectively react to these messages based on their
content and origin. This separation between two types of actors assists isolation: The untrusted actors
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only need facilities to communicate using messaging, and the platform actor can choose to react to
those messages using a resource-specific strategy.

The system needs to prevent the actors received from the network from exceeding the capabilities
intended by the actor model and the platform. Therefore, the platform needs to isolate their execution
and prevent them from interfering with the operation of the platform and other actors, e.g., by directly
accessing their state. This requires a mechanism for isolated code execution. As 𝜇Actor also targets
microcontrollers, it can not rely on traditional VMs, unikernels, or containers as those devices do not
possess the necessary resources and capabilities. Furthermore, those techniques employ machine-
specific executables that are not portable across machines. Therefore, 𝜇Actor uses language virtual
machines such as Lua or V8 as the isolation mechanism for actors.

Those language virtual machines have been used in many recent serverless offerings such as Cloud-
flare’s Workers [9] or Fastly’s Compute@Edge [10]. They are the enabler technology to execute and
isolate the same actors on small microcontrollers and large cloud servers. As demonstrated in [4],
even an ESP32 microcontroller with less than one megabyte of RAM is able to run tens of (minimal)
actors—a much larger number can be run on more powerful devices. As shown by Cloudflare[11,
12], the use of language VMs and their isolation functionality also provides benefits on servers that
would be able to run containers or VMs: Their use reduces the resource consumption of serverless
functions, which allows for higher density on edge servers, and they allow to reduce the cold-start
delays.

𝜇Actor executes the actors, which are received as source- or bytecode, using those language virtual
machines. The actors are only active while processing a message and are expected to complete in a
limited amount of time. This provides the platform with full control over the execution and allows
reusing a system thread across many actors. The actors are provided with a limited set of function-
ality that ensures the desired isolation. Some of these language virtual machines provide sandboxing
capabilities that allow to run multiple mutually isolated actors within one common instance and there-
fore reduce their overheads [4], while others can only ensure the isolation of a single actor and would
therefore require a separate VM instance for every actor. Each 𝜇Actor node can run multiple language
virtual machines to support different languages or isolation properties. As the actors only interact us-
ing messaging, actors can interact with other actors regardless of their implementation language.

Figure 5 shows how 𝜇Actor maps to the Piccolo node architecture described in [2]: The execution
environments for the untrusted actors are shown on the left side and the platform actors are shown on
the right side. The language virtual machines span both the Execution Environment (EE) instances
as well as the runtimes: They are both used to execute the actors and provide them with functionality
such as messaging. As suggested above and demonstrated by the sensor actor, only the platform
actors can interact with special-purpose hardware. Furthermore, the platform actors are also used for
inter-node communication and external communication interfaces. All actors running on the node are
connected to a central messaging bus, which allows them to communicate. Further information on
𝜇Actor’s mapping to the Piccolo node architecture can be found in [5].

The language runtimes protect the platform from malicious actors, but they do not protect the actors
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from an untrusted node. To support this, the language VMs may be protected using an enclave tech-
nology such as ARM’s TrustZone. There is initial work exploring the execution of Lua (which is one
of the languages used by 𝜇Actor) inside TrustZone [13], which shows that this combination is feasible
but requires modifications to the runtimes as they depend on system APIs not provided by the trusted
environment. Additional information and performance measurements can be found in [13]. We plan
to integrate this enclave technology into the 𝜇Actor prototype as part of our future work.

A further area of future work is the security of the messaging mechanism. While the assumption
of unforgeable publisher information within a node provides a basic integrity mechanism, integrity
should be ensured using cryptographic measures. The current system provides no confidentiality. It
is not possible to use end-to-end encryption for entire messages as their content must be accessible
during forwarding.

2.4 IceFlow - Decentralized Data Processing

IceFlow [14] – a Dataflow system approach that supports traditional Dataflow with Information-
Centric principles as well - can be used as a drop-in replacement for existing Dataflow-based frame-
works. Current IceFlow’s objectives are: (i) complexity reduction by replacing connection-based
overlays in Dataflow systems with named-data communication and corresponding orchestration re-
quirements; (ii) efficient communication by reducing data duplication; and (iii) enabling further per-
formance improvements through more direct communication and caching the data in the network.
IceFlow, an NDN-based stream processor, wraps every compute function in the pipeline with an
NDN actor that consumes data for the compute function and produces the computed data. That being
said, IceFlow operates on top of a distributed architecture connected via NDN. IceFlow’s approach
towards security starts with using containers for the actors across the infrastructure. Furthermore, it
utilizes the NDN way of securing and authenticating every data packet across the network layer.

As IceFlow actors can be initiated from suspicious sources, it is essential to isolate each actor and
limit the access of the available resources. We have opted to containerize our DataFlow system into
Docker container as docker virtualization platforms have the best as well as near-native performances
whereas hypervisors exhibit significant networking and memory overhead, but on Input / Output (I/O)
and Central Processing Unit (CPU) bound tasks typically perform on-par with native. Secure con-
tainers particularly suffer from overhead in the I/O subsystem, but promising alternatives are being
developed. Moreover, unikernels reduce the amount of code, therefore application images are small
and reducing attack surface, which increases security. Although it naturally comes at a cost for the
reduction in complexity, most often in the form of decreased interoperability with existing applica-
tions. Since applications must be compiled to run in a unikernel, possession of this source code is
a hard requirement. Moreover, due to the single address space and single process design of uniker-
nels, there is no support for running multiple processes in one unikernel. Separating the applications
up into multiple unikernels will induce at least some communication overhead between the different
parts [15]. Therefore, we describe how IceFlow actors are segregated from each other by the basic
isolation properties provided by Docker.
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While IceFlow actors exchange named data among themselves for further processing, it is unarguably
crucial to maintain the trustworthiness among them. The Named Data Networking (NDN) architec-
ture builds data authentication into the network layer by requiring all applications to sign and authen-
ticate every data packet. To make this authentication usable, the decision about which keys can sign
which data and the procedure of signature verification can be automated using "Trust Schema"[16]
which consists of a set of rules that describes the connection between the data name and the name of
its corresponding signing key. As IceFlow uses NDN for actor’s communications, it adopts this secu-
rity model to ensure that the data communication is more reliable and trustworthy. The trust schema
in the Iceflow defines the relationship between the data namespace and the key namespace under the
dataflow paradigm. Following the key retrieval pattern mentioned in [16], the key retrieval process
in Iceflow starts from the stream produced by the actor up to the producer until it reaches the trust
anchor, e.g., for a data item with a name:

< 𝑎𝑝𝑝𝑋 >< 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 − 𝑓 𝑐𝑡1 >< 𝑠𝑡𝑟𝑒𝑎𝑚1 >< 𝑑𝑎𝑡𝑎1 >

The rules to retrieve the corresponding key will extract the key name as:

< 𝑎𝑝𝑝𝑋 >< 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 − 𝑓 𝑐𝑡1 >< 𝑠𝑡𝑟𝑒𝑎𝑚1 >

Then it will follow the pattern to reach the trust anchor. The trust anchor is considered a pre-
authenticated root key of an application. It can be secured using trust models such as Public Key
Infrastructure (PKI) or web-of-trust. It is noteworthy that every successful key retrieval patterns al-
ways end up at the trust anchor.

This approach enables consumers to discover automatically which keys to use to verify individual
data packets. It also provides producers with an automatic decision process about which keys to use
to sign data packets and, if keys are missing, how to generate keys while assuring that they are used
only within a narrowly defined scope. When receiving the data packets, consumers will also extract
the key name from the data name and match it with the rules. When validated, it can start a process
to retrieve the corresponding key. Note that keys in NDN are also fetched in the form of data packets.
Working on the stream granularity decreases the privilege scope of the keys across the system. So the
stream key is used to sign the data packets requested only by the consumers of this particular stream.
This decreases the threat effects in case of a key compromise [16].

Designing the namespace is challenging as it needs to be valid and efficient from the application’s per-
spective, the network, and the trust schema. This work defines an NDN trust schema variant targeting
the Dataflow paradigm. It preserves the relationship between the key and data names and maintains
correct and efficient naming between consumers and producers across the Dataflow pipeline.

In our initial IceFlow prototype, consumers/producers along with predefined compute functions are
packaged into containers. These containers are being hosted by Raspbian-OS where a NDN Forward-
ing Daemon (NFD) Forwarding Daemon) resides. In Iceflow the Piccolo agent, which represents the
control plane, is responsible for initiating the dataflow pipeline. Later, the NFD will manage the data
plane interactions by routing the interests/data to other containers across the cluster. Figure 6 repre-
sents the initial setup of a node of our raspberry pi cluster. A Piccolo agent receives the configuration
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Figure 6: Containerized IceFlow

and the compute graph via agent API from the application. It translates the requests to docker API
interactions. While dockerd spawns new containers, it creates a set of namespaces and control groups
for the containers, which is the first and most straightforward form of process isolation as processes
running within a container cannot see processes running in another container, or in the host system.

As there is no mapping to lower layer IP addresses, IceFlow actors use application-relevant names
in a suitable namespace. These actors are isolated from each other and their locations as it can
change during a distributed program execution. It no longer matters whether the Dataflow system is
running in a local network or over the internet. It ensures that other actors do not have the access to
containers and only interact through a NDN Forwarding Daemon (NFD). We are using User Datagram
Protocol (UDP) interfaces to communicate the NFD’s route for interest/data packets in our current
protoype.

A container also gets its own network stack, meaning that a container does not get privileged access
to the sockets or interfaces of other containers. It is noteworthy that if the host system is setup
accordingly, containers can interact with each other through their respective network interfaces, which
is not implemented in our current experiment.

In conclusion, security in Iceflow is realized using two mechanisms. First, we use containers to
make sure that actors are isolated and we can support multi-tenant third-party applications across the
infrastructure. Second, using the defined trust schema model at the network layer, every data packet
is signed and later authenticated using the corresponding key. This model also ensures end-to-end
data authenticity among the actors.
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2.5 Using kata-containers for virtualisation

Figure 7: kata-containers

Kata-containers [17] is a container runtime that enables the use of lightweight VMs and containers.
It aims to combine the convenience of deploying containers with the security of lightweight VMs
without the overhead of managing full virtual machines. Kata-containers extends the isolation of
containers by using a separate guest kernel for each container (or group of containers). The containers
appear to be executing within their own Virtual Machine and a hypervisor is used to provide efficient
isolation of network, I/O and memory using hardware virtualization extensions. The guest kernel is
configured to be as small as possible. Kata-containers can be configured to use different hypervisor
solutions for creating lightweight VMs as shown in Figure 7. We looked at two hypervisor backends:
QEMU/KVM [18] in Section 2.5.1 and AWS firecracker [19] in Section 2.5.2.

The Kata Containers runtime is compatible with the OCI runtime specification [20] and therefore
works seamlessly with the Kubernetes Container Runtime Interface (CRI) through the CRI-O and
containerd implementations. The container runtime to be used when deploying a particular applica-
tion can be set in the YAML Ain’t Markup Language (YAML) specification for the application. This
enables different applications to use different container runtimes depending on differing requirements
with respect to isolation. Using kata-containers to isolate workloads in this way makes it much harder
for those workloads to compromise the node (via direct attacks on the host kernel for example).

There are however some limitations when using kata-containers as a replacement for runc. The most
significant being:

• Host-networking: host network access (using the host IP address and network stack) is not
supported. It is not possible to directly access the host networking configuration from within
the VM. Networking for the VM (and its associated containers) is configured via the usual
Container Networking Interface.

• Host resource sharing: Privileged containers get full access to the guest VM in addition to some
host access. The container runs with elevated capabilities within the guest and is granted access
to guest devices instead of the host devices. The container may also be granted full access to a
subset of host devices.
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These limitations would not prevent the use of kata-containers in the context of the Piccolo architec-
ture. If direct access to hardware is required by less trustworthy applications that we want to isolate
(using kata-containers) then we would use a trusted proxy container deployed using the standard runc
container runtime to provide access-as-a-service to the isolated applications.

Figure 8: Piccolo integration

Figure 8 shows how kata-containers could be used to enable containers to be deployed using lightweight
virtual machines on a Piccolo node. In this example, k3s is being used as the container orchestrator
directed by the Piccolo Agent software which controls choice of which container runtime is used for
each Piccolo Execution environment.

2.5.1 QEMU/KVM

Quick EMUlator (software) (QEMU) is a generic and open source machine emulator. In our case, we
are using QEMU for system emulation where it provides a virtual model of an entire machine (CPU,
memory and emulated devices) to run a guest Operating System. Kernel-based Virtual Machine
(Kernel-based Virtual Machine (KVM)) is a virtualization module in the Linux kernel that allows the
kernel to function as a hypervisor to allow such a guest Operating System to run directly on the host
CPU at near-native speed. QEMU also includes functionality to allow "user mode emulation" where
processes compiled for one Instruction Set Architecture can be executed on a CPU with a different
Instruction Set Architecture. This ability to emulate many different systems and devices coupled with
the cross-Instruction Set Architecture functionality makes QEMU more capable than firecracker at
the cost of more software complexity.

QEMU uses the vhost-net driver (on the host) to connect to virtio-net (within the guest). This im-
proves networking performance for the Linux guest OS by offloading the handling of network pack-
ets from the hypervisor to the host kernel driver. Using vhost-net reduces the number of system calls
involved in virtio networking.

Using QEMU it is possible to share host filesystem resources with VM using virtio-fs [21].
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Raspberry Pi 4 Solidrun
Honeycomb LX2

CPU 4 x Cortex-A72 16 x Cortex-A72
CPU Frequency 1.5 GHz 2.0 GHz

RAM 4 GB (LPDDR4-3200) 64 GB (DDR4-2600)
Network 1 GigE 1 GigE
Kernel 5.11.0 5.4.47

OS Ubuntu
20.04

Ubuntu
20.04.02

k3s v1.21.2+k3s1
containerd v1.5.2-0

kata-runtime v2.1.1
QEMU v5.1.0

firecracker v0.23.5

Table 1: Platform Specifications

2.5.2 AWS Firecracker

Firecracker is a virtual machine monitor (VMM) that also uses the Linux Kernel-based Virtual Ma-
chine (KVM) to create and manage lightweight VMs known as microVMs. Firecracker has a mini-
malist design - it excludes unnecessary devices and guest functionality to reduce the memory footprint
and attack surface area of each microVM. Firecracker provides a minimal required device model to the
guest operating system (only 5 emulated devices are available: virtio-net, virtio-block, virtio-vsock,
serial console, and a minimal keyboard controller used only to stop the microVM).

Firecracker is designed to be as small as possible with fast startup time. It has a reduced attack surface
area by including only the minimum required devices. As a consequenc eaccess to host devices such
as GPU or other accelerators is not possible from within the guest. Firecracker does not support the
use of virtio-fs and only supports block-devices for storage - this precludes the sharing of file systems
with the host (as well as requiring the host to provide block-based storage).

Firecracker uses virtio-net but does not support using vhost-net. This may limit its networking per-
formance compared to QEMU.

2.5.3 Experimental setup

We performed experiments using two systems which represent different points in the spectrum of
hardware used for Edge Compute: (1) The Solidrun Honeycomb LX2 is a feature-rich mini-ITX
development board using NXP Semiconductors QorlQ® Layerscape® LX2160A Processor [22]. (2)
The Raspberry Pi4 is a low-cost single board computer built using Broadcom’s BCM2711 System on
Chip [23]. Table 1 shows the specifications of the platforms.
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We installed kata-containers on both platforms along with k3s [24] – a Kubernetes distribution built
for IoT and Edge Computing. We built the kata-container components from source as well as building
a tightly configured Linux kernel that would be run inside each VM. We installed versions of QEMU
and firecracker and configured k3s for deploying containers via kata-containers. Both QEMU and
firecracker were configured to use a single vCPU and to use tcfilter to connect the VM to the host
network.

2.5.4 Results

We measured the network performance difference between deploying the same container image using
the runc container runtime, using kata-containers with QEMU/KVM and using kata-containers using
firecracker. We used iperf3 [25] to measure maximum achievable bandwidth between a container
running the iperf3 client and an iperf3 server. Table 2 shows the results. We measured the bandwidth
in the following scenarios:

1. From the container to an iperf3 server running on a remote computer connected via a 1 GigE
switch (Figure 9)

2. From the container to an iperf3 server running on the test system itself (localhost) (Figure 10)

3. From the container to an iperf3 server running in a container on the test system using the same
container-runtime as the client (Figure 11)

Figure 9: Remote test

The result of network bandwidth tests are shown in Table2. All the configurations were able to get
close to saturating the external link (1Gbit/s). In these cases, the extra cost of running a virtual
machine with a guest kernel and network stack does not significantly affect the maximum bandwidth.
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Figure 10: Local test Figure 11: Runtime-runtime test

The CPU and memory performance difference between platforms are very apparent in the local test
where the LX2 is able to sustain almost 3x more internal bandwidth than RaspberryPi4 (RPi4) (Rasp-
berry Pi4). The RPi4 is limited by the internal bus in the System on a Chip (SoC) to a much lower
maximum memory bandwidth of around 5.5 GB/s (compared to the maximum LPDDR4-3200 DRAM
performance of 12.8 GB/s) This explains the difference between the two platforms which is larger
than the difference in CPU frequency. The overhead of virtualization is now more noticeable - the
maximum performance achieved was 67% of the runc performance using kata-qemu on the LX2 with
the kata-firecracker performance limited to around 58% of the kata-qemu performance. We would
expect kata-qemu to provide more network bandwidth than kata-firecracker because kata-qemu uses
the more efficient vhost-net driver.

On the RPi4 the difference between kata-qemu and kata-firecracker is less pronounced possibly be-
cause the performance of both is constrained by the memory-bandwidth limitation.

The container-container tests show similar results to the local tests - the overheads of virtualization,
with two guest kernels and networking stacks, are significant. Again the different between kata-qemu
and kata-firecracker on the RPi4 is less pronounced than on the LX2.

Remote Local Container
LX2 RPi4 LX2 RPi4 LX2 RPi4

runc 933 934 17520 6233 15089 5467
kata-qemu 99% 96% 67% 37% 88% 32%
kata-firecracker 99% 92% 39% 31% 43% 27%

Table 2: iperf3 Bandwidth Mbits/sec (runc). % normalised to runc

We used the ping tool [26] to measure network latency and created a container image with the ping
tool. Ping uses the Internet Control Message Protocol (ICMP) protocol ECHO_REQUEST datagram
and measures and records the round-trip time of the packet and any losses along the way. Table 3
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shows the results. We measured the round-trip network latency for the following situations:

• From the container to a remote computer connected to the same 1 GigE switch as the test system

• From the container to the test system itself (localhost)

The result of network latency tests are shown in Table 3. There is a significant increase in latency
when using lightweight virtualization. This is due to running a guest kernel and network stack - each
outbound ping packet is effectively travelling from guest-userspace -> guest-kernel -> host-kernel
network driver and then the reply follows the reverse path. Again kata-firecracker appears to incur
a greater overhead than kata-qemu (which uses the more efficient vhost-net driver). Both kata-qemu
and kata-firecracker seem to have lower overhead on the RPi4 comapred to the LX2. We have not
determined why this is the case. It may be due to RPi4 running a newer kernel (5.11.0) compared to
the LX2 (5.4.47).

Remote Local
LX2 RPi4 LX2 RPi4

runc 0.272 0.552 0.141 0.537
kata-qemu × 1.86 × 1.38 × 2.29 × 1.15
kata-firecracker × 2.24 × 1.78 × 3.38 × 1.68

Table 3: ping Mean latency milliseconds (runc). × normalised to runc

Finally, to obtain more application-centered measurements we deployed the Eclipse Mosquitto MQTT
message broker MQTT using the three container runtimes. Table 4 shows the results. We used a
MQTT benchmarking tool, mqtt-bench [27], running on a remote machine to simulate the MQTT
broker. The benchmarking tool simulated 35 clients each sending 20000 messages of size 100 bytes
with "exactly once" delivery. We measured the resident set size for Mosquitto when deployed using
the three container runtimes.

Mean Msg Time Average Bandwidth
LX2 RPi4 LX2 RPi4

runc 2.48 7.79 384.6 127.9
kata-qemu × 1.19 × 1.20 85% 83%
kata-firecracker × 1.67 × 1.27 62% 79%

Table 4: mqtt-bench Msg time milliseconds (runc) and Average Bandwidth msg/sec (runc). × and %
normalised to runc

MQTT test results are shown in Table 4. The average bandwidth when using kata-qemu is relatively
close to the raw iperf3 numbers on both platforms. The kata-firecracker results are lower especially
on the LX2. The mean message time results show kata-qemu with around a 20% increase on both
platforms. kata-firecracker is once again much worse on the LX2.
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Table 5 shows the resident set size for Mosquitto using the different container runtimes. Both kata-
qemu and kata-firecracker require more memory than runc as they execute a guest Linux kernel. The
kernel used for firecracker has been optimised to remove unneeded functionality and this can be seen
its smaller Resident Set Size (RSS).

Memory Usage
MB

LX2 RPi4

runc 3.6 3.0
kata-qemu 127.0 125.0
kata-firecracker 98.0 86.0

Table 5: Resident Set Size for Mosquitto

2.5.5 Conclusion

The use of kata-containers to provide lightweight virtualization enables more secure deployment of
computation in scenarios where multiple applications are executing. These lightweight VMs are not
suitable for every application (such as those requiring access to specialised hardware accelerators
for example) and we would anticipate that the best solution would be a hybrid model of standard
containers plus containers executing within lightweight VMs. Also, as we have seen, the overheads
of using lightweight VMs are not insignificant and may be too high for an application that requires
maximum performance from the hardware. However, in the context of Piccolo and Edge Computing
in general these overheads may still be worthwhile for the benefits of isolation that are achieved when
using lightweight virtual machines.

The QEMU and firecracker backends for kata-containers have differing properties that mean neither
would be the default choice when looking for a more secure container runtime. QEMU is more
flexible and provides more of the standard container runtime features (such as host file-sharing, access
to hardware devices). Firecracker is more streamlined and its lower memory footprint would allow
more lightweight VMs to be deployed on a machine.
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3 Next Steps

Here we briefly outline future work, both that which is planned within the project and potential activity
beyond Piccolo’s lifetime / scope.

Based on our work on kata-containers for virtualisation (Section 2.5) we identify two new approaches
that provide different ways to improve the isolation of an application on a Piccolo node.

The first approach is based on seL4 [28], which is an open-source microkernel and also provides
a trusted hypervisor with a small Trusted Computing Base. As well as protecting guests and their
applications from each other, this arrangement could protect the guests from a malicious host. IceCap
[29] is an example of a virtualization platform with a minimal trusted computing base that aims to
provide guests with confidentiality and integrity guarantees. We are making IceCap into a hypervisor
backend for kata-containers that we can then compare with QEMU and firecracker.

The second approach is based on features from the Arm Confidential Computing Architecture [30]
using realms to provide isolation of applications from each other and the host. The most straightfor-
ward application of realms is to isolate each Virtual Machine within its own realm. A more radical
approach would be to use realms to isolate userspace processes. Unfortunately it will not be possible
to perform this research within the lifetime of the Piccolo project - although some simulation models
and associated software components are available today, they are beta-releases and do not implement
all the required functionality.

As discussed in section 2.3, we plan to protect the actors using trusted execution environments (such
as Arm’s TrustZone) and to explore security mechanisms related to the messaging functionality. How-
ever, both these planned activities are out of scope for this project. Other potential issues for actor
approaches - where no work is planned at the moment - include how to check for correctness across a
chain of micro-actors, and how to authenticate that a message has come from a genuine sender actor.

Turning next to Iceflow 2.4, we identify two future approaches that provide ways to improve the
performance and security isolation of IceFlow on a Piccolo node.

Initially, every application has multiple trust anchors where the local Piccolo agent in every node is
responsible for generating a root key for the actors running on this specific node. In future, another
approach would be having one trust anchor per application generated by the Piccolo agent, which
instantiates the DataFlow pipeline of the application. This trust anchor would be solely responsible
for all the data signing by producers and the data authentication by consumers. These two approaches
will affect the namespaces’ design, as the trust schema plays an important role here. Our next steps
not only include testing these approaches but also deciding suitable namespace design that fits the
application, the network, and the trust schema.

For performance isolation, we have adopted the isolation features that are provided by docker contain-
ers: every compute function runs in the container (whereas NFD runs on host Operating System (OS),
which will also be containerised in future). For efficiency, data communications among IceFlow ac-
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tors of an application running in different containers on the same node do not need to communicate
via NFD; instead direct communication can be used. This approach will not only reduce the commu-
nication overhead but also improve the performance of latency critical applications.

Finally, considering Erlang (Section 2.2). Each Erlang node could be run in its own ARM Realm
[30] to achieve hardware assisted security isolation. The Erlang nodes could connect securely with
Erlang’s distribution protocol (it comes with TLS support out of the box). Taken together, one can
achieve a very interesting secure, distributed, multi-tenant computing platform. It would allow dis-
tributed Erlang applications to be completely isolated from the host operating system and hypervisor
as well as from each other.

An interesting future challenge here is adding distributed key management infrastructure for en-
crypted Erlang distribution which would make large scale secure distributed applications possible.

A couple of other ideas are: to add some firewall-like features between Erlang nodes [31], and to
run multiple Erlang VM instances on the seL4 secure micro-kernel, which isolates the Erlang VMs
(Kry10 project [32]).

CO PICCOLO consortium 2022 Page 28 of (30)



PICCOLO Deliverable D2.3

References

[1] Piccolo Project. Use cases, Application Designs and Technical Requirements. Deliverable D1.1.
2021.

[2] Piccolo Project. Piccolo Node Definition. Deliverable D2.1. 2021.

[3] Piccolo Project. Architectural Invariants for Distributed Computing. Deliverable D3.1. 2021.

[4] Raphael Hetzel, Teemu Kärkkäinen, and Jörg Ott. “𝜇Actor: Stateful Serverless at the Edge”.
In: Proceedings of the 1st Workshop on Serverless Mobile Networking for 6G Communications.
MobileServerless’21. Association for Computing Machinery, 2021, 1–6.

[5] Piccolo Project. Initial Report on PoC Implementation of a Piccolo Node. Deliverable D2.2. 2021.

[6] Carl Hewitt, Peter Bishop, and Richard Steiger. “A Universal Modular ACTOR Formalism for
Artificial Intelligence”. In: Proceedings of the 3rd International Joint Conference on Artificial Intel-
ligence. 1973, 235–245.

[7] Carl Hewitt and Henry G. Baker. “Laws for Communicating Parallel Processes”. In: Proceedings
of the IFIP Congress 1977. 1977, pp. 987–992.

[8] Carl Hewitt. “Actor Model for Discretionary, Adaptive Concurrency”. In: Computing Research
Repository (CoRR) abs/1008.1459 (2015). version 38. url: http://arxiv.org/abs/1008.
1459v38.

[9] Cloudflare, Inc. Cloudflare Workers. url: https://workers.cloudflare.com/ (visited on
03/02/2022).

[10] Fastly, Inc. Fastly Compute@Edge. url: https://www.fastly.com/products/edge-
compute/serverless (visited on 03/02/2022).

[11] Kenton Varda. Introducing Cloudflare Workers: Run JavaScript Service Workers at the Edge.
2017. url: https://blog.cloudflare.com/introducing- cloudflare- workers/
(visited on 03/02/2022).

[12] Zack Bloom. Cloud Computing without Containers. 2018. url: https://blog.cloudflare.
com/introducing-cloudflare-workers/ (visited on 03/02/2022).

[13] Adrian Steffan. “Running a language interpreter inside the ARM TrustZone: An exploration of dy-
namic code execution in trusted execution environments”. Bachelor’s Thesis. Technical University
of Munich, 2020. url: https://adriansteffan.com/pdf/bthesis.pdf.

[14] Dirk Kutscher, Laura Al Wardani, and T M Rayhan Gias. “Vision: Information-Centric Dataflow:
Re-Imagining Reactive Distributed Computing”. In: Proceedings of the 8th ACM Conference on
Information-Centric Networking. ICN ’21. Paris, France: Association for Computing Machinery,
2021, 52–58. isbn: 9781450384605. doi: 10.1145/3460417.3482975. url: https://doi.
org/10.1145/3460417.3482975.

[15] Vincent van Rijn. A Study of Performance and Security Across the Virtualization Spectrum. Mas-
ter’s Thesis. 2021. url: http://repository.tudelft.nl/.

CO PICCOLO consortium 2022 Page 29 of (30)

http://arxiv.org/abs/1008.1459v38
http://arxiv.org/abs/1008.1459v38
https://workers.cloudflare.com/
https://www.fastly.com/products/edge-compute/serverless
https://www.fastly.com/products/edge-compute/serverless
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://adriansteffan.com/pdf/bthesis.pdf
https://doi.org/10.1145/3460417.3482975
https://doi.org/10.1145/3460417.3482975
https://doi.org/10.1145/3460417.3482975
http://repository.tudelft.nl/


PICCOLO Deliverable D2.3

[16] Yingdi Yu et al. “Schematizing trust in named data networking”. In: proceedings of the 2nd ACM
Conference on Information-Centric Networking. 2015, pp. 177–186.

[17] Kata Containers Community. Kata containers Description. 2021. url: https://katacontainers.
io (visited on 03/03/2021).

[18] Alexandru Agache et al. “Firecracker: Lightweight Virtualization for Serverless Applications”. In:
17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 419–434. isbn: 978-1-939133-13-7. url: https:
//www.usenix.org/conference/nsdi20/presentation/agache.

[19] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. In: Proceedings of the An-
nual Conference on USENIX Annual Technical Conference. ATEC ’05. Anaheim, CA: USENIX
Association, 2005, p. 41.

[20] "Open Container Initiative Runtime Specification". Jan. 17, 2021. url: https://github.com/
opencontainers/runtime-spec/blob/main/spec.md.

[21] virtio-fs. 2022. url: https://virtio-fs.gitlab.io (visited on 03/18/2022).

[22] Solidrun. HONEYCOMB LX2 WORKSTATION. Dec. 14, 2021. url: https://www.solid-
run.com/arm-servers-networking-platforms/honeycomb-workstation/.

[23] Raspberry PI. Raspberry Pi 4 Tech Specs. Dec. 14, 2021. url: https://www.raspberrypi.
com/products/raspberry-pi-4-model-b/specifications/.

[24] Lightweight Kubernetes". Jan. 18, 2022. url: https://k3s.io.

[25] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. Dec. 14, 2021. url: https://
iperf.fr.

[26] ping (8) Linux manual page. Dec. 14, 2021. url: https://man7.org/linux/man-pages/
man8/ping.8.html.

[27] MQTT Benchmarking Tool. Dec. 14, 2021. url: https://github.com/krylovsk/mqtt-
benchmark.

[28] Gernot Heiser, Gerwin Klein, and June Andronick. “SeL4 in Australia: From Research to Real-
World Trustworthy Systems”. In: 63.4 (Apr. 2020), pp. 72–75. issn: 0001-0782 (print), 1557-7317
(electronic). doi: https://doi.org/10.1145/3378426.

[29] 2022. url: https://gitlab.com/arm-research/security/icecap/icecap (visited on
03/18/2022).

[30] Arm Ltd. Arm Confidential Computing Architecture. url: https://www.arm.com/architecture/
security-features/arm-confidential-compute-architecture (visited on 03/04/2022).

[31] potato salad. RFC: Erlang Dist Security Filtering Prototype. url: https://erlangforums.
com/t/rfc-erlang-dist-security-filtering-prototype/1002 (visited on 03/31/2022).

[32] Kry10 Ltd. Kry10 Secure Platform. url: https://kry10.com (visited on 03/31/2022).

CO PICCOLO consortium 2022 Page 30 of (30)

https://katacontainers.io
https://katacontainers.io
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://github.com/opencontainers/runtime-spec/blob/main/spec.md
https://github.com/opencontainers/runtime-spec/blob/main/spec.md
https://virtio-fs.gitlab.io
https://www.solid-run.com/arm-servers-networking-platforms/honeycomb-workstation/
https://www.solid-run.com/arm-servers-networking-platforms/honeycomb-workstation/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://k3s.io
https://iperf.fr
https://iperf.fr
https://man7.org/linux/man-pages/man8/ping.8.html
https://man7.org/linux/man-pages/man8/ping.8.html
https://github.com/krylovsk/mqtt-benchmark
https://github.com/krylovsk/mqtt-benchmark
https://doi.org/https://doi.org/10.1145/3378426
https://gitlab.com/arm-research/security/icecap/icecap
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://erlangforums.com/t/rfc-erlang-dist-security-filtering-prototype/1002
https://erlangforums.com/t/rfc-erlang-dist-security-filtering-prototype/1002
https://kry10.com

	Executive summary
	List of Authors
	List of Figures
	Abbreviations
	1 Introduction
	2 Challenges and advances
	2.1 Behavioural risk monitoring PoC
	2.2 GRiSP Seawater SaaS Language specific sandboxing
	2.3 Actor
	2.4 IceFlow - Decentralized Data Processing
	2.5 Using kata-containers for virtualisation
	2.5.1 QEMU/KVM
	2.5.2 AWS Firecracker
	2.5.3 Experimental setup
	2.5.4 Results
	2.5.5 Conclusion


	3 Next Steps

